Lecture 13:
Mathematical Induction
Part 2 of 2



Outline for Today

 “Build Up” versus “Build Down”

 An inductive nuance that follows from our
general proofwriting principles.

« Complete Induction

* When one assumption isn’t enough!



Quick Announcements!



Problem Set Five

PS5 will be posted today and is due at the
normal Friday 1:00PM time next week.

* You can use a late day to extend the PS4
deadline to Saturday at 1:00PM if you’d like.

* You know the drill: ask questions on Ed or
office hours if you have them. That’s what
we’re here for!



Problem Set Three Graded

 PS3 grades are posted!

« Recommendation: As soon as you can, review all the
feedback you got on PS3 and ask yourself these
questions:

« Based on the proofwriting and style feedback you received, do
you know what specific changes you’d make to your answers?

 If you made any logic errors, do you understand what those
errors are to the point that you could explain them to someone
else?

* Feel free to stop by office hours or to visit EdStem if you
have questions. We’re happy to help out! You can do
this!

 Exam grading is this Saturday.



Problem Set Three Graded

75% Percentile: 73 / 82 (89%)

50t Percentile: 70 / 82 (85%)
25% Percentile: 65 / 82 (79%) I

0-47 48 -52 03-507 58-62 63-67 68-72 73-77 78-382




Recap from Last Time



Let P be some predicate. The principle of mathematical
induction states that if

/\ ] oo ‘
1 it <farts P(0) is true awcilwtje sTays
True.. and

Vk € N. (P(k) -» P(k+1))
then

vVn € N. P(n)

Then i1's
always True,



Variations on Induction



Subdividing a Square




Subdividing a Square

These regions
aren’T squares,




Subdividing a Square

Squares can’t
overlap or hang
ott the figure,




For what values of n can a square be
subdivided into n squares?



An Insight




Theorem: For any n = 6, there is a way to subdivide a square into
n smaller squares.

Proof: Let P(n) be the statement “there is a way to subdivide a
square into n smaller squares.” We will prove by induction that
P(n) holds for all n = 6, from which the theorem follows.

As our base cases, we prove P(6), P(7), and P(8), that a square
can be subdivided into 6, 7, and 8 squares. This is shown here:
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For the inductive step, assume that for some arbitrary k = 6
that P(k) is true and that there is a way to subdivide a square
into k squares. We prove P(k+3), that there is a way to
subdivide a square into k+3 squares. To see this, start by
obtaining (via the inductive hypothesis) a subdivision of a
square into k squares. Then, choose any of the squares and split
it into four equal squares. This removes one of the k squares
and adds four more, so there will be a net total of k+3 squares.
Thus P(k+3) holds, completing the induction. W




Generalizing Induction

« When doing a proof by induction,

 feel free to use multiple base cases, and
« feel free to take steps of sizes other than one.

 If you do, make sure that...

* ... you actually need all your base cases. Avoid redundant
base cases that are already covered by a mix of other base
cases and your inductive step.

... you cover all the numbers you need to cover. Trace out
your reasoning and make sure all the numbers you need
to cover really are covered.

» As with a proof by cases, you don’t need to
separately prove you’ve covered all the options. We
trust you.



More on Square Subdivisions

 There are a ton of interesting questions

that come up when trying to subdivide a
rectangle or square into smaller squares.

» In fact, one of the major players in early
graph theory (William Tutte) got his start
playing around with these problems.

* Good starting resource: this Numberphile
video on


https://www.youtube.com/watch?v=NoRjwZomUK0&feature=youtu.be

The-Colored-CubesProblem

The Magic Potions Problem



Here are 20 potions of 4 different colors.
Split them into 4 shelves of 5 potions each so that
each shelf has potions of at most two different colors.



To be clear, here’s the setup:

Each shelf will always have 5 potions.

A shelf will never have potions of
more than 2 different colors.

We’ll always have 5n potions of n colors
(where n € N).

Currently, we have 20 potions and 4 colors
(so, n = 4).



Here are 20 potions of 4 different colors.
Split them into 4 shelves of 5 potions each so that
each shelf has potions of at most two different colors.



Here are 20 potions of 4 different colors.
Split them into 4 shelves of 5 potions each so that
each shelf has potions of at most two different colors.
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Here are 25 potions of 5 different colors.
Split them into 5 shelves of 5 potions each so that
each shelf has potions of at most two different colors.



Here are 25 potions of 5 different colors.
Split them into 5 shelves of 5 potions each so that
each shelf has potions of at most two different colors.



A good split of a group of bn potions of n
colors is a way of splitting them across
shelves where each shelf has five potions
with no more than two colors.

Theorem: For any group of 5n potions of n
colors, there is a good split of those potions.



P(n) is the statement “for any group of 5n potions of n colors,
there exists a good split of those potions.”

P(0)

Theorem: For any group of 5n potions of n different,
colors there exists a good split of those potions.



P(n) is the statement “for any group of 5n potions of n colors,
there exists a good split of those potions.”

Vk € N. (P(k) —» P(k+1))

Which of the following best describes the high-level
structure of the inductive step of this proof?

A. Begin with a group of 5k potions of k colors.
Find a way to add in five new potions and one color.

B. Begin with a group of 5k+5 potions of k+1 colors.
Find a way to remove five potions and one color.

Answer at hitps://cs103.stanford.edu/pollev

Theorem: For any group of 5n potions of n different,
colors there exists a good split of those potions.


https://cs103.stanford.edu/pollev

P(n) is the statement “for any group of 5n potions of n colors,
there exists a good split of those potions.”

Vk € N. (P(k) —» P(k+1))

What kind ot gquantifier is
embedded in our predicate, P(n)?

Theorem: For any group of 5n potions of n different,
colors there exists a good split of those potions.



P(n) is the statement “for any group of 5n potions of n colors,
there exists a good split of those potions.”

Vk € N. (P(k) —» P(k+1))

if
\
for every group of 5k potions of k colors, ASSM me
there’s a good split of those potions. a universal
o
then
\
for every group of 5k+5 potions of k+1 colors, Prove a\
there’s a good split of those potions. universa

Theorem: For any group of 5n potions of n different,
colors there exists a good split of those potions.
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Idea: Begin with bk+5 potions and k+1 colors.
Find a way to remove five potions and one color.




Idea: Begin with bk+5 potions and k+1 colors.
Find a way to remove five potions and one color.




Idea: Begin with bk+5 potions and k+1 colors.
Find a way to remove five potions and one color.




Idea: Begin with bk+5 potions and k+1 colors.
Find a way to remove five potions and one color.




Idea: Begin with bk+5 potions and k+1 colors.
Find a way to remove five potions and one color.




Idea: Begin with bk+5 potions and k+1 colors.
Find a way to remove five potions and one color.



Find a color that appears
five or fewer times.

If it’s exactly five times,
place all potions of that
color on a single shellf.

Otherwise, place all
potions of that color and
“top off” with potions
of another color.

Idea: Begin with bk+5 potions and k+1 colors.
Find a way to remove five potions and one color.



Theorem: Every group of 5n potions of n colors has a good split.

Proof: Let P(n) be the statement “for any group of 5n potions of n colors,
there exists a good split of those potions.” We will prove that P(n)
holds for all n € N, from which the theorem follows.

As our base case, we prove P(0), that any group of 0 potions of O
colors has a good split. Pick any group of O potions. Placing them
onto 0 shelves satisfies the requirement of a good split, so P(0) holds.

For our inductive step, pick some k € N and assume P(k) holds: any
group of 5k potions of k colors has a good split. We will prove P(k+1):
that any group of 5k+5 potions of k+1 colors has a good split.

Pick any group of 5k+5 potions of k+1 colors.

We need fo find a color thal appears
five or fewer fimes, Whal mathematical
Tool quarantees such a color exists?




Theorem: Every group of bn potions of n colors has a good split.

Proof: Let P(n) be the statement “for any group of 5n potions of n colors,
there exists a good split of those potions.” We will prove that P(n)
holds for all n € N, from which the theorem follows.

As our base case, we prove P(0), that any group of 0 potions of O
colors has a good split. Pick any group of O potions. Placing them
onto 0 shelves satisfies the requirement of a good split, so P(0) holds.

For our inductive step, pick some k € N and assume P(k) holds: any
group of 5k potions of k colors has a good split. We will prove P(k+1):
that any group of 5k+5 potions of k+1 colors has a good split.

Pick any group of 5k+5 potions of k+1 colors. By the GPHP, there is a
color (call it purple) with p = 5 potions.

A nice abbreviation of
‘generalized pigeonhole
principle,”




Theorem: Every group of bn potions of n colors has a good split.

Proof: Let P(n) be the statement “for any group of 5n potions of n colors,
there exists a good split of those potions.” We will prove that P(n)
holds for all n € N, from which the theorem follows.

As our base case, we prove P(0), that any group of 0 potions of O
colors has a good split. Pick any group of O potions. Placing them
onto 0 shelves satisfies the requirement of a good split, so P(0) holds.

For our inductive step, pick some k € N and assume P(k) holds: any
group of 5k potions of k colors has a good split. We will prove P(k+1):
that any group of 5k+5 potions of k+1 colors has a good split.

Pick any group of 5k+5 potions of k+1 colors. By the GPHP, there is a
color (call it purple) with p = 5 potions. We consider two cases:

Case 1: p = 5. Place all five purple potions onto their own shelf.

Case 2: p < 5. By the GPHP, there is some other color (call it
green) with g = 5 potions. Place all p purple potions and
b - p = g green potions onto one shelf.

In each case, we form a shelf with 5 potions of at most two different
colors and are left with 5k potions of k colors. By our IH, there is a
good split for the remaining potions. That, plus our original shelf, is a
good split of the 5k+5 potions. Thus P(k+1) holds, completing the
induction. W



A Neat Application

» This result on colored potions forms the
basis for the alias method, a fast algorithm
for simulated rolls of a loaded die in
software.

» This in turn has applications throughout
computer science.

« Want to learn more? Check out
, which shows how to apply
this result.


https://keithschwarz.com/darts-dice-coins/

An Observation



for any group of 5n potions of n colors,
there is a good split of those potions.

universal
quantifier
“build down”
Start with Get to
more potions fewer potions

“there exists a way to subdivide
a square into n squares.”

existential
quantifier

=

)

“build up”

Start with Get to more
fewer squares squares



Start with Get to
more cubes fewer cubes

Start with Get to more
fewer squares squares



Following the Rules

« When working with square subdivisions, our
predicate looked like this:

P(n) is “there exists a way to subdivide
a square into n squares.”

« When working with colored potions, our predicate
looked like this:

P(n) is “for any group of 5n potions of n colors,
there is a good split of those potions.”

 With squares, the quantifier is 4. With potions, the
first quantifier is V.

« This fundamentally changes the “feel” of induction.



Build Up with 4

In the case of squares, in our inductive step, we prove
If
there exists a subdivision into k squares,
then
there exists a subdivision into k+3 squares.

Assuming the antecedent gives us a concrete subdivision
into k squares.

Proving the consequent means finding some way to
subdivide in to k+3 squares.

The inductive step goal is to “build up:” start with a smaller
number of squares, and somehow work out what to do to get
a larger number of squares.



Build Down with V

 In the colored potions case, in our inductive step, we prove
If

for all groups of 5k potions of k colors,
there’s a good split
then

for all groups of 5k+5 potions of k+1 colors,
there’s a good split

 Assuming the antecedent means once we find 5k potions
and k colors, we can group them into a good split.

 Proving the consequent means picking an arbitrary group
of 5k+5 potions of k+1 colors and looking for a good split.

 The inductive step goal is to “build down:” start with a

larger set of potions, then find a way to turn it into a smaller
set of potions.



Some Notes

 Not all predicates P(n) will have the form outlined
here.

« That’s okay! Just use the normal rules for assuming and
proving things.

« Think of these as quick shorthands rather than
fundamentally new strategies.

* In all cases, assume P(k) and prove P(k+1).

« All that changes is what you do to assume P(k) and what you
do to prove P(k+1).

« When in doubt, consult the assume/prove table.

It really does work for all cases!



Complete Induction



It’s time for

Mathematicalesthenics!



What Just Happened?

This is kinda
like P(0).,

If you are the leftmost person
in your row, stand up right now.

Everyone else: stand up as soon as the
person to your left in your row stands up.

This is kinda like
P(k) » P(k+1),




Round Two!



What Just Happened?

This is kinda
like P(0).,

If you are the leftmost person
in your row, stand up right now.

Everyone else: stand up as soon as
everyone left of you in your row stands up.

What sort of
sorcery is This?




Let P be some predicate. The principle of complete
induction states that if

~ ——» P(0) is true .and it stays
It it starts Yrue
True.. and

forall k € N, if P(0), ..., and P(k) are true,
then P(k+1) is true

then

Vn € N. P(n)

Then i1's
always True,



Complete Induction

* You can write proofs using the principle
of complete induction as follows:

Define some predicate P(n) to prove by
induction on n.

Choose and prove a base case (probably, but
not always, P(0)).

Pick an arbitrary k € N and assume that
P@), P(1), P(2), ..., and P(k) are all true.

Prove P(k+1).
Conclude that P(n) holds for all n € N.



An Example: Eating a Chocolate Bar



Eating a Chocolate Bar

* You have a 1 X n chocolate bar subdivided
into 1 X 1 squares.

* You eat the chocolate bar from left to right
by breaking off one or more squares and
eating them in one (possibly enormous) bite.

« How many ways can you eat a...

e 1 X 1 chocol
e 1 X 2 chocol
e 1 X 3 choco!

late bar?
late bar?
late bar?

e 1 X 4 chocol

late bar?




There are eight ways to eat a 1 x 4 chocolate bar.



;3]

It you eal one piece
first, you then eaf the

| .

remaining 1 x 3

chocolate bar any way
youd like,

|-

|

There are eight ways to eat a 1 x 4 chocolate bar.



It you eat Two pieces
firsT, you Then eal the
remalning 1 x 2
chocolate bar any way
youd like,

There are eight ways to eat a 1 x 4 chocolate bar.



It you eat fhree pieces
firsT, you Then eal the
remaining 1 x 1
chocolate bar any way
youd like,

There are eight ways to eat a 1 x 4 chocolate bar.



Or you could eal the
whole chocolate bar af
once, Ah, gluftony,

There are eight ways to eat a 1 x 4 chocolate bar.



Eating a Chocolate Bar

* There’s...

1 way to eat a 1 X 1 chocolate bar,

2 ways to eat a 1 x 2 chocolate bar,

4 ways to eat a 1 X 3 chocolate bar, and
8 ways to eat a 1 X 4 chocolate bar.

* OQur guess: There are 2"-!waystoeatal X n
chocolate bar for any natural number n = 1.

 And we think it has something to do with this insight:
we eat the bar either by

» eating the whole thing in one bite, or

* eating some piece of size k, then eating the remaining n - k
pieces however we’d like.

e Let’s formalize this!



Theorem: For any natural number n = 1, the number of waystoeata 1 X n
chocolate bar from left to right is 27-1.

Proof: Let P(n) be “the number of ways to eat a 1 X n chocolate bar from left
to right is 2"-1.” We will prove by induction that P(n) holds for all natural
numbers n = 1, from which the theorem follows.

As our base case, we prove P(1), that the number of waystoeatal x 1
chocolate bar from left to right is 21 -1 = 1. The only option here is to eat
the entire chocolate bar at once, so there’s just one way to eat it, as
needed.

For our inductive step, assume for some arbitrary natural number k = 1
that P(1), ..., and P(k) are true. We need to show P(k+1) is true, that the
number of ways to eat a 1 X (k+1) chocolate bar is 2*.

There are two options for how to eat the bar. First, we can eat the whole
chocolate bar in one bite. Second, we could eat a piece of size r for some
1 = r = k, leaving a chocolate bar of size k+1-r, then eat that chocolate
bar from left to right. Since 1 = r = k, we know that 1 = k+1-r = k, so by
our inductive hypothesis there are 2X-" ways to eat the remainder.

Summing up this first option, plus all choices of r for the second option,
we see that the number of ways to eat the chocolate bar is

1 +204+2V 4+ .+ 2k-0 = 1421 =2k
Thus P(k+1) holds, completing the induction. W



More on Chocolate Bars

* Imagine you have an m X n chocolate bar.
Whenever you eat a square, you have to eat all
squares above it and to the left.

« How many ways are there to eat the chocolate bar?

 Open Problem: Find a non-recursive exact formula
for this number, or give an approximation whose
error drops to zero as m and n tend toward infinity.



Induction vs. Complete Induction

I can solve I can solve
smaller versions » bigger versions
of the problem of the problem




Induction vs. Complete Induction

Regular
Induction

Complete
Induction

~




Induction vs. Complete Induction

Regular
Induction
Exactly k Exactly k+3
squares > squares
Complete
Induction
Bars with A bar with
fewer than » exactly k+1
k squares squares



Induction vs. Complete Induction

Regular
Induction

Exactly k Exactly k+3

Ssgquares > sguares

Reqular induction is
greal when you know

exacTly how much smaller
your ‘smaller” problem
instance is,




Induction vs. Complete Induction

Complete induction is
greal when you know
things get smaller, but
you've not sure by how

much,
Complete
Induction
Bars with A bar with
fewer than » exactly k+1
k squares squares



An Important Milestone



Recap: Discrete Mathematics

 The past five weeks have focused exclusively
on discrete mathematics:

Induction Functions

Graphs The Pigeonhole Principle
Formal Proofs Mathematical Logic

Set Theory

 These are building blocks we will use
throughout the rest of the quarter.

* These are building blocks you will use
throughout the rest of your CS career.



Next Up: Computability Theory

 It's time to switch gears and address the limits
of what can be computed.

 We'll explore these questions:

« How do we model computation itself?

 What exactly is a computing device?

 What problems can be solved by computers?
 What problems can't be solved by computers?

* Gel ready to explore the boundaries of
what computers could ever be made to do.



Next Time

« Formal Language Theory

« How are we going to formally model
computation?

 Finite Automata

* A simple but powerful computing device
made entirely of math!

* DFAs

« A fundamental building block in computing.



